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SUMMARY 

A new algorithm for the solution of the shallow water equations is introduced. The formulation is founded on a 
suitable operator-splitting procedure for which a characteristic-based rational form of including balancing 
dissipation terms is achieved. 

In the semi-explicit form the method circumvents the requirement of a critical time step given in terms of the 
wave celerity, which is restrictive for the analysis of long-wave propagation in shallow waters. 

In this work the robustness of the algorithm is illustrated for transient shallow water problems and for some 
supercritical flows, where the choice of an algorithm with optimal diffusion properties is manifest. 

KEY WORDS computational fluid dynamics; shallow water equations; tides 

1. INTRODUCTION 

The application of the finite element method to the solution of shallow water equations has an 
extensive development, shown by a substantial literature with some relevant publications by Lynch and 
Gray,' Peraire et al.,' Zienkiewicz et 

The remarkable contribution of the Taylor-Galerkin' and characteristic-Galerkin" methodologies 
for the finite element method in the field of compressible, high-speed flow problems has also been 
extended to the solution of the shallow water equations.' 

However, while the Taylor-Galerkin method could be used for a general form of conservation 
equations with multiple characteristic speeds, only the Characteristic-Galerkin method, proved for a 
single characteristic speed, justifies the use of Galerkin spatial discretization. 

The basis of the algorithm introduced in this work is essentially the fractional step procedure,'' 
which has been successfully applied to incompressible flows (e.g. Reference 12) and more recently to 
compressible and incompressible flows in a unified f~rmulat ion. '~ . '~  

The fractional step methodology exploited here allows a single characteristic velocity (the actual 
velocity) to be considered by the characteristic-Galerkin method. This gives a rational definition of the 
balancing dissipation terms and justifies the application of a Galerkin spatial discretization in the 
convective equation. 
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The semi-implicit form of the general formulation provides a critical time step dependent only on the 
current velocity, At = h/u, where h is the element size and u is the flow velocity, instead of a critical 
time step in terms of the wave celerity c, which places a severe constraint on fully explicit methods 
such as the Taylor-Galerkin approximation. l 5  

The present method computes, as in the fractional step procedure, the pressure (or elevations of the 
free surface) by means of a Laplacian-type equation, whose self-adjointness makes the Galerkin space 
discretization optimal. 

Otherwise, velocities are computed in two stages explicitly with the characteristic-Galerkin method, 
first considering the momentum equations ommiting the pressure gradient terms and finally with a 
correction coming from the computed new pressure. 

A convenient form of the governing shallow water equations, depth-integrated assuming hydrostatic 
pressure distribution and constant horizontal velocities in depth, is described in the next section. 

The subsequent sections are devoted to the discussion of the numerical solution proposed and to the 
application of the model to transient shallow water problems such as tidal lows and bore propagation 
and to steady subcritical and supercritical channel flows (including 'jumps' or shock patterns in the 
latter). 

2. GOVERNING EQUATIONS 

The shallow water equations in their depth-integrated form can be written in a Cartesian system 
xi (i = 1, 2) of space co-ordinates (see Figure l), using the summation convention, as 

a h  aui -+-=o ( i =  1, 2), at ax1 

au, aF.. ap a ~ . .  
at ax, axi axj -+-'-+-+++Q;=O ( i , j =  1, 2), 

where h = H + 7 and Ui = hu; are the unknowns. In the above h is the total height of water, 
H = H(xl, x2) the depth of water and 7 the surface elevation with respect to the mean water level and u; 
are the depth-averaged components of the horizontal velocity. 

Fii = huiuj = Uiuj is the ith component of the jth flux vector and G represents the diffusive, viscous, 
fluxes. Here the 'pressure' p is defined as 

p = i g ( h 2  - H 2  1 (3) 
to maintain the analogy with equations of compressible flows. 

The vector Q contains the source terms, which in general can be specified as 

Mean wate, 
level 

Figure 1. The shallow water problem notation 
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where the well-known Chezy-Manning formula is adopted for the bottom friction term, ri is the ith 
component of the Coriolis force 

with f the Coriolis parameter, zi  are the surface wind tractions, p is the density of the water andp, is the 
atmospheric pressure. 

Using equation (3), the variable h can be substituted in equation (l), defining the wave speed c as 

Equations (1) and (2) can be rewritten, neglecting the diffusion terms, in the form 

1 ap au, 
- -+-=o ( i =  1, 2 ) ,  
c2 a t  axi 

where the unknowns are now U; and p. 

3. NUMERICAL PROCEDURE 

A time discretization of equations (6)  and (7) is introduced to compute changes in Ui and p .  We thus 
write 

1 Ap dU,!"'l 
--+- = o  
c2 At dxi 

and, proceeding approximately along the characteristic transport pathsI3, 

Here the parameters el and O2 can be chosen in the range 0-1. The first two terms on the right-hand 
side of equation (9) come from the expansion along the characteristics and the derivation of the 
equation is illustrated in the Appendix. 

By means of this explicit method an appropriate treatment for the convective and source terms of 
equation (7) can be accomplished, justifying now the use of a Galerkin spatial discretization owing to 
self-adjointness. 

Again based on the discretization along the characteristics, the pressure term in equation (9) can be 
written as13 

In the above 
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Inserting equation (1 1 )  into (8) and equation (10) into (9), introducing an auxiliary variable U* 
to replace the first two terms on the right-hand side of (9) and observing that Ap = p" + ' - p" results 
in 

1 Ap dUn d(AUi) 
+--+el - dXi = 0 ( i =  1, 2), -_  

c2 At dxi 

Now AUj can be eliminated by inserting (13) into (12). The final expression for p is 

omitting higher-order terms. 

again optimal. 

(a) computation of AUY 
(b) computation of pressure by means of equation (14) and of the new surface elevation using the 

(c) computation of the final velocity Ul + AUi using equation (13). 

Following these steps, this procedure is similar to the fractional step method of Reference 1 1. However, 
in the process described above, a splitting of the variables has not been carried out explicitly. 

Space discretization 

Equation (14) is self-adjoint in the variable Ap and the standard Galerkin space discretization is 

The sequence of solution after discretization in space follows the pattern below: 

relation expressed in equation (3) 

For the sake of clarity the three steps are described below in more detail. 

(a) Apply the standard Galerkin procedure and the Gauss theorem for the AU; computation, 
assuming the discretization for the variables as 

ui =  NU^; A U ~  = NEG~; AU; = NAU;; qi = NQ 

(where the overbar denotes the appropriate nodal values). This results in 

where all terms on the RHS are computed in 

M =  J N T N ~ ,  
R 

the time nAt = t,. Now, introducing the notation 
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the final matrix form of equation (15) is 
At 

M . du* = -At(CU" + M@) - (K,Bn + fe) + btl, 

where btl represents the last (boundary) term of equation (15) and is identically zero at solid 
boundaries (u, = 0). 

This approximation is conditionally stable and involves only mass matrix inversion for its solution. 
For one-dimensional problems, neglecting the constraint coming from the source term, the stability 
condition for pure convection is 

where h is the element size and c1 = 1/J3 for the consistent mass matrix or c1 = 1 if mass lumping is 
used. It can be observed that this limit is in terms of the current velocity, instead of the wave velocity as 
in the Taylor-Galerkin method.9315 

#en steady state solutions are studied, a local time step defined by (1 8) is recommended for the 
right-hand side of (1 5), giving identical diffusion to that included by the optimal streamline upwinding 
procedure. 

(b) By means of the standard Galerkin method and the discretization 
- 

P = NP;, Ap = NAP; 
equation (14) leads, after the use of Green's theorem, to the matrix form 

(M + &&AtH)Aj? = -AtQ(U" + e l m * )  - &A?Hp" + bt2, 

where now 

The boundary terms bt2 are 

The necessary boundary conditions to solve (1 9) imply the following. 

(i) For prescribed elevations in a portion of the boundary both terms of bt2 must be computed. 
(ii) For totally reflecting wall boundaries the slip boundary condition is imposed for velocities in the 

solution of both equations (17) and (13). The normal component of (13) to the wall boundary is 

Therefore the projection of the approximation to dp"i-e2 / a x ;  normal to the wall boundary is zero 
and bt2 vanishes. 

(c) The final velocity is obtained from the discretization of equation (1 3), which leads to 
At2 
2 

M d u  = Mm* - AtQ (p" + &&) + - Pp", 

where 
d dN 

P = ( l - & )  -(ukNT)-dt2 (i, k = l ,  2). 
/fI axk dXi 
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At the completion of this stage the values of ui and p at ( n  + 1)At are fully determined. 
It can be observed that if other scalar transport equations are added to the model (e.g. pollutants, 

temperature), it is only necessary to carry out for them a computation totally analogous to step (a), with 
the same time step limitation. 

Semi-implicit and explicit forms 

Assuming values of the parameters 81 and 82 such that 

; < e l  I 1, ; < e 2 1 i r  

equation (19) is solved implicitly and the stability limit of the whole solution is governed by the critical 
time step of equation (18). 

Taking 82 = 0 (and Q1 an arbitrary value (8, 2 f), e.g. O1 = ;) equation (19) becomes explicit, and 
calling A? the time step written on the right-hand side, we have 

- AQ M- = -Q(U" + elm*) - AtHp" + bt2. 
At 

- 

(24) 

For stability of solutions the At on the left-hand side must fulfil the condition3 

h2 
2c2& A?. 

At 5 ~ 

The choice of A? is as follows. 

(i) A? = At is necessary for an accurate transient solution. The global stability limit is nearly the same 
as that for the Taylor-Galerkin method. 

(ii) A? = h/u: the choice of a local A? gives optimal accuracy for steady state solutions as shown in 
Reference 10. 

4. NUMERICAL RESULTS 

Some transient and steady state numerical solutions are now considered to illustrate the performance of 
the algorithm derived here. 

4.1. Transient solutions 

Long waves in a rectangular channel. A rectangular channel is discretized using 40 three-node 
triangular elements (total 33 nodes). A sinusoidal elevation of amplitude A = 1 is prescribed at the left 
boundary and the rest of the boundary is considered totally reflecting. For a constant depth H = 5 m 
and a channel length L = 800 m the critical time step for an explicit Taylor-Galerkin schemeI5 gives 
At55 s. In the case of the limit governed by equation (1 8) the critical time step is At5800 s in terms of 
the maximum (theoretical) velocity u = 0-102 m s-' for a monochromatic wave with frequency 
w = 0.005498 rad s-'. 

Figures 2(ak2(c) show the results of the implicit version of the model (6, = B2 = 0.5) for the 
elevations at the extreme right wall point and the velocities at the left free boundary in comparison with 
the theory. These results were computed for At = At(exp1icit) = 5 s, At = 50 s and At = 100 s with 
very good agreement. 

Annular section with linearly varying depth. Here a linear depth variation problem with an existing 
analytical solution is considered. This test was proposed in Reference 16 and is shown in Figure 3(a). 

Again a sinusoidal elevation is prescribed at the circular open boundary, considering a frictionless 
flow. In Figures 3(b) and 3(c) we plot the numerical and theoretical results along a radial direction 
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right wall point -1 
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( c )  

Figure 2. A rectangular channel. Periodic excitation by prescribed input elevation. Results. Semi-explicit model (0, = 02 = 0.5) 
for: (a) At = At(explicit), (b) At = lOAt(exp1icit) and (c) At = 20At(explicit). 

(4  = 7d4) for maximum elevation time and maximum velocity time, assuming the following data: 
r I  = 10 m, r2 = 20 m, H(r l )  = 10 m, H(r) = H(r l )  + r, o = 0.9425 rad s-'. 

The results were computed using a triangular mesh with 20 element rows in the radial direction and 
10 in the circumferential direction. 

A bottom friction term varying from a maximum at t = 0 to zero at t = T is included to filter noise. 
Steady results are reached after two cycles and excellent agreement with the theoretical solution is 
reached. 
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Figure 3.  (a) Annular section with linear varying depth. (b) Maximum elevation v(r) at 4 = x/4. (c) Maximum velocity v(r) at 
4 = xl4 

Severn Estuary. An application to a real case is presented here. The tidal propagation in the Sevem 
Estuary (Bristol Channel) (Figure 4(a)) is studied with a relatively coarse mesh (Figure 4(b)) of 256 
linear triangular elements and 172 points, including full bathymetry description. This is shown in 
Figure 4(c), where the depth (at mean water level) vanes from 40 m at the western limit to less than 
10 m at Avonmouth. 
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Figure 4. (a) Sevem Estuary. @) Mesh. (c)  Bathymetry (Ah = 3 m) 

The bottom friction is approximated using a Manning coefficient n = 0.04. 
Stable results are reached after two periods from a ‘cold’ start and are presented in Figure 5 for the 

period T = 12.5 h. 
For Figure 5 four control points are chosen: Swansea Bay, Weston-super-Mare, Avonmouth and an 

exterior boundary point at the centre of the western limit, where a sinusoidal imput elevation is 
prescribed as 3.65 m tidal amplitude. 
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Figure 5 .  Sevem Estuary. (a) Elevations (computed for At = 48 s against measurements). (b) Computed elevations for 4 = 48 
At = 480 s and At = 800 s. (c) Exterior boundary point. Computed velocity for At = 48 s, At = 480 s and At = 800 s. 

The critical time step for explicit computation is At M 48 s and the semi-explicit model has been 
applied for At = At(exp1icit) = 48 s,  At = lOAt(exp1icit) and At % 17At(explicit) with 8, = O2 = 0.5. 
In Figure 5(a) the results for At = 48 s are compared at three points with measurements (elevations),” 
showing only slight differences. 

The good agreement is retained upon increasing the time step to 16At(explicit), as shown in Figure 
5(b) for the elevations at the control point of Avonmouth. 

The exterior boundary point is chosen to check the velocity results, which are depicted in the phase 
diagram of Figure 5(c), showing good phase and amplitude behaviour for At = lOAt(exp1icit) and 
At M 17At(explicit) in comparison with the results obtained for At = At(explicit). 

The prescribed elevations are imposed at the boundary in Figure 4(a) labelled ‘western limit’. 
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Tidal bore in the River Severn. Bore formation is a typically non-linear effect originated by tidal 
motion and consists of a body of water propagating up a river with the incoming tide, possessing a 
well-defined front separating it from the slowly ebbing water into which it advances. 

The bore moving up the River Severn has been extensively observed and studied (see e.g. Reference 
IS). In this work an approximation to this phenomenon up from the eastern limit of the Severn Estuary 
(schematically represented in Figure 6(a) from Avonmouth (A) to Gloucester (G)) is made by an 
extended mesh obtained by adding 225 elements and 227 nodes to the mesh used in the previous case. 
A simplified straight mesh was adopted for this prolongation (Figure 6(b)). 

A linear depth variation is assumed from H = 10 m at Avonmouth (point A of Figure 6(b)) to 
H = -6 m at point G of Figure 6(b), where the distance from A along the river is 77,500 m. The width 
varies from 6000 m at A to 400 m at B (Blakeney), 200 m at E (Epney) and 30 m at the right extreme 
and the Manning coefficient considered is 0.04. The measurement points are located at B and E, where 
the distances from A along the river are 34,000 and 57,500 m respectively. 

The semi-explicit model has been applied with At = 4At(explicit) = 100 s and the same elevation 
input as in the previous case has been imposed, along with a steady river flow. The results are depicted 
in Figure 6(c) for points B and E, where a typical shape of water elevation-time variation for a tidal 
bore can be observed for point E. 

The agreement of the results with the  measurement^'^ at point B is good (Figure 6(d)), while the 
differences obtained at point E (Figure 6(e)) are probably due to the simplified bathymetry and 
geometry adopted. 

4.2. Steady state solutions-supercritical jlow 

Obviously the algorithm can be used to obtain efficient steady state solutions for many shallow 
water problems. Here we illustrate this type of application for three problems of water flow at 
supercritical velocities (F  > 1). These are (i) a boundary wall constriction over one side of an 
otherwise unbounded f10w,19 (ii) cross-waves formed by a symmetrical wall constriction in a 
rectangular channel and (iii) a combination of cross-waves and 'negative' jumps in a variable width 
channel. 

These cases pose strong requirements on the performance of the model because of their 'shock'-type 
solution. 

In these problems the vertical accelerations in the vicinity of the jumps are not considered (since a 
hydrostatic pressure distribution is assumed in the depth integration). 

Boundary wall constrictions. When the change in the alignment turns towards the centre of a 
channel as represented in Figure 7(a), a standing wave pattern is created of the type shown in Figure 

A regular triangular mesh was used (Figure 7(c)) with 2066 nodes and 3955 elements to capture 
accurately the 'jump' formed. 

A comparison is made here between the results obtained by the Taylor-Galerkin method, the new 
method introduced and the theoretical result. l 9  

In Figure 8(a) we plot the contours of elevations for the Taylor-Galerkin method and in Figure 8(b) 
for the new method, showing a smaller dispersion of the latter for F1 (Froude number of the 
inflow) = 2.5. In both cases the angle of the shock is close to the theory: 

7@). 

Theory Taylor-Galerkin New 

39.58" 39.7" 39.7" 
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Figure 6 .  Severn Bore. (a) Severn River from: A (Avonmouth) to G (Gloucester). Measurements points: B (Blackeney), E (Epney). 
(b) Straight mesh from: A to B (vertical scale = horizontal scale), B to G (vertical scale = 5 x horizontal scale). (c) Water surface 
elevations history for points A, B, E of (a). Semi-explicit model. (d) Computed and measured elevations of point B. (e) Computed 

and measured elevations of point E. 
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Elev tm.1 
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Figure 6 (d), (e)  

However, more oscillations are observed with the Taylor-Galerkin method. This can be better seen in 
Figures 9(a) and 9@) for the total height and Froude number along the bottom line in comparison with 
the theory. 

No artificial or bottom friction was included, but the interior damping was increased by using a 
limiting value of A? in the new algorithm. 

The better behaviour of the new algorithm is also confirmed when the problem is studied for 
F(inflow) = 3, where fewer oscillations are again observed (Figures 10(a), Taylor-Galerkin; Figure 
10(b), new; Figures 1 l(a) and 1 l(b)). Now the angles of the shock are: 

~~~~~ 

Theory Taylor-Galerkin New 

34.36" 34.5" 344" 

Again no artificial diffusion is required. 
The boundary conditions imposed are height and velocities prescribed at the inflow boundary (left 

boundary), slip boundary condition at the wall, free variables at the outflow (right boundary) and 
symmetric boundary condition on the upper boundary. 

An explicit (0, = 0-5, O2 = 0) solution was adopted and local time stepping with A? = hlu and a 
lumped mass matrix was used. 

sides of the channel, a 'cross-wave' pattern is developed. 

17,975 elements was generated. 

Symmetric channel constrictions. If the change in the alignment described above appears on both 

Considering symmetrical constriction (j = 5"), a fine regular mesh (Figure 12) of 9181 nodes and 

The results, presented in Figure 13, are for h = 1 m in region 1 give the following depths: 

Region Theory (h)  Numerical (h) 

2 1 *254 1 *25 
3 1.55 1.54 
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h i  

v 1  

___t 

channel wall b beta=lSo 

/ 
/ h2 

h i  

Section n-n 

(b) 

Exit Boundaries 

Figure 7. (a) Problem of boundary wall constriction in supercritical flow. (b) Section of the jump formed. (c) Mesh 

These can easily be improved by an adaptive remeshing methodology.20 
The boundary conditions for this problem are supercritical inflow at the left boundary (h,  u, 

prescribed), free variables at the outflow (right boundary) and slip wall boundary at the sides. The 
inflow Froude number was taken as 2-5. 

The explicit version (0, = 0.5, Q2 = 0) with a lumped mass matrix and local time stepping (in terms 
of curent velocity) was again used. 
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Figure 8. Problem of boundary wall constriction. Froude number 2.5 (inflow). Contours of h: (a) Taylor-Galerkin; (b) new 
algorithm 
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Figure 9. Problem of boundary wall constnction Froude number 2.5 

Figure 10. Problem of boundary wall constriction. Froude number 3 (inflow). Contours of h: (a) Taylor-Galerkin (b) new 
algorithm 
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Figure 12. Symmetric channel constriction. Mesh 
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Figure 13. Symmetric channel constriction. Contours of h 
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Symmetric channel of variable width. For a supercritical flow in a rectangular channel with a 
transition of the form shown in Figure 14, a combination of a ‘positive’ jump, as in the previous 
example, and ‘negative’ waves, causing a decrease in depth, appears. The profile of the latter is gradual 
and an approximate solution can be obtained by assuming no energy losses and that the flow near the 
wall turns without separation. 

Here we study a constriction and enlargement of 15”. The mesh involved has 9790 nodes and 19,15 1 
elements. 

Applying the same boundary conditions and version of the model as in the previous example, the 
final results containing ‘cross’-waves and ‘negative’ waves are represented in Figure 15 (heights). One 
can observe the ‘gradual’ change in the behaviour of the negative wave created at the origin of the wall 
enlargement. Finally, in Figure 16 heights at the wall boundary are plotted, showing that the negative 
jump at the origin of the enlargement still has a ‘shock’ characteristic. 

5. CONCLUSIONS 

The new method outlined here represents an improvement over the algorithm presented in Reference 3. 
Here the introduction of diffusion by means of the ‘characteristic-Galerkin’ approach is simpler and 
more direct. 

The accuracy is demonstrated in several examples throughout the range of flows encountered in 
shallow water problems. 

A suitable choice of explicit or semi-explicit versions of the model makes it very efficient in the 
solution of transient and steady state problems. The extension to deal with transport equations can be 
straightforwardly solved. 

Future developments are being focused on the solution of ‘drying’ area problems, where the 
geometry of estuarine flows changes, and the inclusion of the vertical distribution of the flow in 
problems such as tidal and wind-driven circulation. 
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Figure 14. Symmetric channel of variable width. Mesh 



1078 0. C .  ZIENKIEWICZ AND P. ORTIZ 

Figure 15. Symmetric channel of variable width. Contours of h 

APPENDIX 

Consider for simplicity the transport equation of a scalar variable 4 without diffusion, 

6'4 i3F. -+A + Q = 0,  
at ax, 

where F', = u,@ and Q is a source term. 
This can be written as 

a4 df#l au, 
dt ' ax, ax, 
-+u.-+ 4 -+ Q = 0. 

Calling 4" the value at nAt at the position xi - di (origin of the characteristic, as can be seen in 
Figure 17 for the space co-ordinate xi), along the characteristic we can write 

4 n + ' - $ " = - A t  (- Q + 4 -  2)" , 

where the overbar denotes values which are some average along the characteristic at xi. 

2.4 I 

Figure 16. Symmetric channel of variable width. Height along side boundary (m) 
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b+l 
t = (n + 1 )dt- 

S i  
Figure 17. Schematic representation of the characteristic variables 

The distance di can be approximated as 

Further, approximating 6'' as 

and inserting the approximation for d;, we can write (omitting terms higher than A?) 

The evaluation of Q and 4(au;/ax,) in (26) gives 

1079 

Now, substituting (27)-(29) into (26), calling A 4  = 4'' + '-4" and reordering, we can obtain 

A $ = - A t  (E - + Q  )" +- A: [ u i -  Li(E --"+Q )In , 

It can be noted that the final expression does not now include the term +(au,/ax,). (For a more 
detailed derivation see Reference 13.) 
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